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BSTRACT 

he protein structure prediction problem has been 

olved for many types of proteins by AlphaFold. Re- 
ently, there has been considerable excitement to 

uild off the success of AlphaFold and predict the 

D structures of RNAs. RNA prediction methods use 

 variety of techniques, from physics-based to ma- 
hine learning approaches. We believe that there are 

hallenges preventing the successful development 
f deep learning-based methods like AlphaFold for 
NA in the short term. Broadly speaking, the chal- 

enges are the limited number of structures and align- 
ents making data-hungry deep learning methods 

nlikel y to succeed. Additionall y, there are se veral is- 
ues with the existing structure and sequence data, 
s they are often of insufficient quality, highly bi- 
sed and missing key information. Here, we discuss 

hese challenges in detail and suggest some steps 

o remedy the situation. We believe that it is pos- 
ible to create an accurate RNA structure prediction 

ethod, but it will require solving several data quality 

nd volume issues, usage of data beyond simple se- 
uence alignments, or the development of new less 

ata-hungry machine learning methods. 
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RAPHICAL ABSTRACT 

NTRODUCTION 

NA molecules pla y man y key functions within cells. Per- 
aps the most striking example is in translation, where it has 
een shown that the ability to build proteins is orchestrated 

y ribosomal particles, with the crucial catalytic step being 

erformed by the ribosomal RNA itself, with amino acid 

esidues deli v ered specifically by tr ansfer RNAs. Untr ans- 
ated regions of mRNAs and viruses harbor numerous reg- 
latory elements. There are also a large number of noncod- 

ng RN As (ncRN A) for w hich, despite decades of r esear ch,
e have only a scant understanding of their functions. An 

xample is the large class of long noncoding RNAs in ani- 
al genomes. These RNA genes are numerous, perhaps ex- 

eeding the number of protein-coding genes and seem to 

lay a range of subtle regulatory roles ( 1 ). Many ncRNA 

unctions depend on the stable (ribosome, tRNA) or 
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Figure 1. Examples of interactions in an RNA molecule. Some of the most 
important interactions are highlighted in dashed lines: base pairing hydro- 
gen bonds in dark red, sugar-base stacking in dark violet, phosphate-base 
hydrogen bond in yellow, water-formed hydrogen bonds in cyan (waters 
are depicted as cyan balls). The bottom pair is canonical Watson–Crick, 
the pair above is a G–U pair ‘locked’ by interaction with bridging water 
molecule. G2147 is in syn orientation and dinucleotide C2146–G2147 is in 
the left-handed Z-form conformation (note the inverted direction of the ri- 
bose of C2146 further stabilized by stacking its O4’ to the guanine aromatic 
ring). Displayed is a six nucleotide loop from 80 nucleotide long fragment 
of 23S RNA from Thermus thermophilus complexed with ribosomal pro- 
tein L1 (PDB ID: 4qvi) ( 5 ). 
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transient (spliceosome) structure of RNA. Knowledge of
RNA structures can answer basic scientific questions and
can be of great help in design of new types of drugs and ther-
apies. Structures can help answering the fundamental ques-
tion of evolution whether life started with RNA as ‘RNA
World’ ( 2 ) or other, perhaps peptide-type molecules. Ratio-
nal drug design would without a doubt benefit from reliable
predictions of RN A structures. Increasingl y, the growing is-
sue of bacterial drug resistance is appr oached fr om different
perspecti v es but specific inhibition of ribosome particles of-
fers a promising route to effecti v e treatment ( 3 ). RNA ther-
apies are attracting more attention from large pharmaceu-
tical companies ( 4 ). 

RNA building blocks , nucleotides , are chemically com-
plex with aromatic nitrogenous bases, chiral ribose sugar
rings and phosphate groups. The bases are able to stack on
each other by van der Waals interactions, but they also carry
large electrical moments and can form strong hydrogen
bonds. Ribose rings strongly constrain backbone geome-
tries by their puckers; the C3’-endo pucker prevails in RNA,
but a ribose can also locally adopt the C2’-endo pucker,
thus radically changing the backbone geometry. The phos-
phate groups are perhaps structurally the most complex
parts of the RNA molecules due to d-orbitals in phospho-
rous atoms. Both torsion angles describing the conforma-
tions around the phosphodiester bonds O3’-P and P-O5’
called � and � prefer -gauche orientations, but the torsions
can adopt any other combinations of gauche, trans and -
gauche (+60 

◦, 180 

◦ and –60 

◦) conforma tions. Phospha tes in
nucleic acids under normal conditions are charged and ren-
der whole RNA or DNA molecules strongly negati v e, which
needs to be neutralized by interacting positi v e ions. The sin-
gle negati v e charge of each phosphate is distributed between
its unbound oxygen atoms that are highly polarizable and
capable of forming hydrogen bonds to other RNA atoms,
proteins and water, but also of forming char ge-char ge in-
teractions to amino acids, other cellular components such
as amines and prominently also to metals. All intra- and
inter-molecular interactions in which RNA molecules are
involved determine their structur es. Figur e 1 illustrates at
least some of these physically complex interactions as they
were observed in a small six-nucleotide loop from an 80-nt
fragment of rRNA from a crystal structure 4qvi ( 5 ). 

RNA 3D STRUCTURE PREDICTION: ST A TE OF THE
ART 

In the 1960s, first attempts began to reconstruct in silico the
3D structures of RNA molecules based on sequence homol-
ogy ( 6 ). These efforts became more frequent with a growing
number of experimentally determined 3D RNA structures.
Building in silico models relied largely on manual manipula-
tion of structure templates in a computational environment.
The first interacti v e tool targeting RNA tertiary structure
modeling was published in 1998 ( 7 ). Se v er al y ears later, sys-
tems that could fully or semi-automatically process from
RNA sequence to a 3D model began to appear, using ab
initio folding such as F ARF AR ( 8 ), iFoldRNA ( 9 ), NAST
( 10 ), SimRNA ( 11 ) and Vfold ( 12 ); or homology model-
ing such as RNABuilder ( 13 ) and ModeRNA ( 14 ), or a
fragment-based assembly approach used in MC-Fold / MC-
Sym ( 15 ), Assemble ( 16 ), RNAComposer ( 17 ) and 3dRNA
( 18 ). In the past two years, deep learning (DL)-based pre-
dicti v e models hav e begun to emer ge. The paper by To wn-
shend et al. ( 19 ) presented a DL model that predicted the
quality (RMSD) of a new computer-generated 3D RNA
structure. Meanwhile, other works ( 20–22 ) described meth-
ods that used deep learning for the end-to-end 3D predic-
tion of the RNA structure. 

With the increasing availability of computer-based meth-
ods for predicting 3D RNA structures, the question of
the reliability and quality of the generated models became
more important. In response , RNA-Puzzles , a collecti v e
b lind e xperiment to critically e valuate the prediction of 3D
RNA structures, was started in 2010 ( 23 ). During the past
12 years, RNA-Puzzles organized 38 competiti v e challenges
( 24 ) and two dedicated projects –– modeling structures from
unknown Rfam families and untranslated region of SARS-
CoV-2 ( 25 ). Within each, participants predicted the tertiary
structure of a single RNA target. The predictions were eval-
uated mainly by comparing them with a r efer ence struc-
ture, once the latter was published in the Protein Data
Bank and the assessments for 34 challenges are currently
known (data as of February 2023). Se v eral similarity and
distance measur es wer e used for evaluation, some of which
were specifically de v eloped for RNA ( 26–30 ). For example,
Interaction Network Fidelity (INF), a similarity measure,
scor es the pr ediction of base pairs, Watson–Crick (INF-
WC), non-Watson–Crick (INF-NWC) and stacking (INF-
stacking). As shown in Figure 2 , during the 12 years of chal-
lenges in RN A-Puzzles, INF-WC generall y ranged between
0.75 and 1.0, demonstrating that most models had accu-
rately predicted double helical stem motifs (INF = 1 means
ideal prediction and 0 is failure). Howe v er, INF-NWC
scored close to 0 for most predictions, which is of concern
since non-Watson–Crick base pairs play a crucial role in
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Figure 2. Distribution of values of selected evaluation measures for the predictions submitted to RNA-Puzzles from inception to 2022. Numbers in paren- 
theses next to each puzzle indicate the total number of nucleotides for all structures in each puzzle. 
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etermining the overall fold of the RNA, influencing stem 

acking and junction topologies. RMSD indicates how 

he predicted 3D coordinates diverge from those of the 
 efer ence structur e and shows only a few models with 

MSD < 5 ̊A . For most RNA-Puzzles, the distribution of 
MSD values is multimodal and spreads over a wide range. 
her efor e, despite significant advances in modeling ap- 
roaches, predicting RNA coordinates with nati v e-like fea- 
ur es r emains challenging and r equir es improvements in 

oth accuracy and quality ( 31 ). 
The RNA-Puzzles initiati v e has adopted many mecha- 

isms that were de v eloped in CASP, the biennial experiment 
or the critical assessment of protein structure prediction. 
he first CASP competition was launched in 1994 ( 32 ), a 

uarter of a century after pioneering r esear ch into 3D com- 
uter modeling of protein structure began ( 33 ). Twenty- 
e v en participating groups were challenged to predict the 
 tomic coordina tes of 33 amino acid sequences. In subse- 
uent editions of CASP, the number of targets and partici- 
ants incr eased (Figur e 3 ), and new competition categories 
merged. This included a fully automatic prediction by w e b 

ervers, a category that started in 2000 (CASP4). Eighteen 

ears later, AlphaFold ( 34 ) entered the game in CASP13 

 35 ) to make a breakthrough in protein structur e pr ediction 
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Figure 3. Numbers of RNA and protein structure predictions made in 
RNA-Puzzles and CASP competitions. The solid lines r epr esent the num- 
bers of groups competing in CASP and RNA-Puzzles; the dashed lines are 
for the number of pr otein / RNA targets. Fr om 2010 to 2021, RNAs were 
predicted only in RNA-Puzzles and in 2022, CASP included also RNA tar- 
gets, which is responsible for the recent spike in targets and groups involved 
in 3D RNA structure prediction. 
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in 2020 (CASP14) ( 36 ). RNA-Puzzles opened its own w e b
server category in 2015. In 2022, this competition saw the
first teams using deep learning models to predict 3D RNA
structures. In the same year, CASP-RNA was launched, a
contest co-organized by CASP and RNA-Puzzles ( 37 ). It
coincided with an explosion of interest in the prediction of
the 3D RNA structure ( 38 ) resulting, among other things,
from the success of AlphaFold and the Covid-19 pandemic
caused by an RNA virus. 42 groups participating in CASP-
RNA tried their hand at modeling three-dimensional
structures for 12 RNA sequences. Eighteen contribut-
ing teams used deep learning models (including Deep-
F oldRNA, RhoF old, trRosettaRNA and OpenComplex-
RNA) at various stages of prediction ( 20–22 ). The fi-
nal CASP-RNA ranking gave the top 4 places to teams
that combined expert modeling with non-machine learning
algorithms. 

THE CHALLENGES 

AlphaFold and other highly accurate methods ( 34 , 39–
48 ) applied deep learning to predict the protein struc-
ture based on the sequence. Training these tools required
huge amounts of data. For example, AlphaFold imple-
mented a bootstrap technique in which its final ver-
sion used both experimentally determined and predicted
structures of high accuracy. A fundamental question is
whether we have enough RNA structure data for train-
ing and whether they are of sufficiently high quality and
di v ersity. 
RNA content in the Protein Data Bank 

Since the first tRNA structures were solved in the mid-
1970s ( 49 ) and published about ten years later ( 50 , 51 ) it was
known that RNA molecules could adopt complex 3D archi-
tectures. Howe v er, it was not until the late 1990s that struc-
tures of functionally new types of RNA emerged: first sev-
eral types of ribozymes ( 52–54 ), and then impressi v e ribo-
some particles ( 55–57 ). These re v ealed the structural rich-
ness of the RNA ar chitectur es, which was later confirmed
by more structures solved mostly by X-ray crystallography
and recently by cryo-electron microscopy (cryo-EM). De-
spite all the discoveries about RNA structures, the sheer
volume of experimental structural data available for RNA
and proteins remains strongly in favor of the latter (Ta-
ble 1 ). There are about 25 times more protein depositions
than RNA. The ratio is slightly more favorable for DNA,
but e v en so, both nucleic acids account for < 10% of the
PDB archi v e, and this ratio has remained fairly stable over
time. The situation is e v en more dramatic when restricted
to high-resolution data: among X-ray and cryo-EM struc-
tures with a resolution better than 2.0 Å , proteins are about
100 times more abundant than RNA (Table 1 ). Consider-
ing all structures with resolution < 3.0 Å , RNA nucleotides
constitute only 2% of all residues (nucleotides and amino
acids) ( 58 , 59 ). Unfortunately, these proportions cannot be
expected to change quickl y. Newl y solved crystal and cryo-
em structures tend to have a limited resolution. The reason
is the inherent flexibility of RNA molecules that can be esti-
mated, for instance, by factors B and R in the crystal phase;
they are higher for RNAs than for proteins with compara-
ble resolution. A limited number of high-resolution RNA
structures is a se v ere constraint, as these structures are the
source of the most reliable experimental information about
the 3D structures, and some belie v e the only. 

RNA ar chitectur es crucial f or the global f old 

The main architectural element of RNA is an antiparal-
lel double helix of form A that constitutes a pproximatel y
60% of RNA in ribosome particles. The structure of this
element is the easiest to identify and predict. The overall
three-dimensional arrangement of a molecule results from
the assembly of these helical regions. It is orchestrated by
various types of 3D motifs such as sharp turns , loops , n-
way junctions, coaxial stacking of duplexes and triple and
quadruple helical regions ( 56 , 60 ). A junction consists of at
least three helical regions arranged in a way that signifi-
cantly influences the overall fold. There are three families
of three-way junctions, which differ by the coaxial stack-
ing pattern ( 60 ). For junctions with higher multiplicity, it
becomes more complicated ( 61 ). The correct prediction of
the junction topology and the resulting stem orientation is
of utmost importance, but poses a significant challenge, as
ther e ar e usuall y onl y single or no homolo gous junctions in
experimental structures of RNA ( 62 ). All of the aforemen-
tioned regions often form between sequentially distant parts
of the RNA molecule and are stabilized by non-Watson–
Crick base pairs (NWC). Reliable information on struc-
turally critical NWCs is necessary for the correct 2D / 3D
structural predictions. Howe v er, the collection of NWCs
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Table 1. Numbers of all PDB-released structures (*) and residues in X-ray and cryo-EM structures (**) with high resolution ( ≤2.0 Å ) over decades. In 
the first column, amino acids are abbreviated as AAs, and nucleotides as nts 

≤1980 1981–1990 1991–2000 2001–2010 2011–2022 Total % of the total 

Proteins (*) 78 634 12 121 43 205 108 677 164 715 91 .57 
AAs ≤2.0 Å (**) 5050 45 236 1 609 401 11 390 238 28 513 777 41 563 702 99 .78 
RNA (*) 2 23 306 1392 4488 6211 3 .45 
RNA nts ≤2.0 Å (**) 0 0 1270 5974 26 921 34 165 0 .08 
DNA (*) 1 91 1061 2009 5800 8962 4 .98 
DNA nts ≤2.0 Å 0 238 5430 15 730 38 107 59 505 0 .14 
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Figure 4. Comparison of predicted and experimentally determined struc- 
tures. Displayed is hammerhead ribozyme RNA: the structure determined 
experimentally by X-ray dif fraction a t the 2.9 Å resolution (PDB ID 5di4) 
( 65 ) is shown in light blue, the model PZ15 Adamiak 15 is in red. Car- 
toon r epr esentation of the r esidues A9-U33 in panel ( A ) suggests that the 
prediction follows the overall topology of the ribozyme correctly but with 
local deviations. Panel ( B ) shows segments between residues G11 and G18. 
The overall backbone direction is predicted correctly but local deviations 
are large. They include differences in base orientations and subsequently in 
base pairing and also the distances between the corresponding phospho- 
rous atoms are quite large; one such distance between Ps of adenosines 15 
of the target and model is highlighted by the green rod. Segments in panel 
B on the left and right show the same atoms, the view is rotated by ∼90 
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n high-resolution PDB structures is not sufficient to in- 
er their sequence and structural features ( 63 ). There are 
34 thousand RNA nucleotides in high resolution ( ≤2.0 

˚
 ) crystal and cryo-EM structur es, compar ed to ∼42 mil- 

ion amino acids; it is < 0.1% of all PDB-deposited residues 
Table 1 ). 

3D modules are another group of crucial yet hard to pre- 
ict motifs ( 64 ) (Figure 4 ). They are primarily defined by 

WCs that form an intricate network of interactions. These 
etworks r emain coher ent e v en in RNAs from different 
hylogenetic groups. 3D modules serve as loops, turns and 

 oundations f or protein-RN A or RN A–RN A interactions. 
heir accurate modeling is essential to catch the global 
NA fold, but it is har dly possib le due to the low amount
f data available. 
RNA ar chitectur es ar e also stabilized by interactions 

uch as base-ribose hydrogen bonding, intramolecular in- 
eractions with charged phosphates, and coordination with 

etal ions. The roles of these interactions are e v en less un- 
erstood than those of non-Watson–Crick base pairs. 

uality of experimental RNA data 

ot only does the shortage of high-resolution structures 
omplica tes the accura te annota tion of RNAs. Ther e ar e 
roblems with the quality of deposited RNA (and DNA) 
a ta tha t arise from the lack of community-accepted quality 

tandards. They ar e r elated to base pairing, valence geome- 
ry and backbone geometry; their combination can lead to 

 flood of imprecisely and unreliably refined structures. 
A formal description of base pairing is essential to 

uild reliable 3D models. However, base pairing in pub- 
ic archi v es is not described reliab ly; it is often incom-
lete or incorrect. The programs used to assign base pair 
opology to 3D structures, such as MC-Annotate ( 66 ), 
N Aview ( 67 ), FR3D ( 68 ), ClaRN A ( 69 ), CompAnnotate

 69 ), RN A pdbee ( 70 ), bpRN A ( 71 ), baRN Aba ( 72 ), BP-
ET ( 73 ) and DSSR ( 74 ), often provide incomplete or con-

icting information (manuscript in pr eparation). Ther efor e, 
omprehensi v e benchmar king must be performed along 

ith a consistent update of public archives with topology 

ata from the consensus algorithm(s). 
Perhaps of lesser but existing importance for the predic- 

ion of large RNA structures is the inconsistency of targets 
sed in the refinement of bond distances and angles. These 
alence geometry targets differ in various refinement pro- 
rams, validation packages and the PDB, leading to con- 
usion in the community. Ther efor e, an ELIXIR-led effort 
as undertaken by the Nucleic Acid Valence Geometry 
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Figure 5. Rfam versus Pfam alignments compared based on ( A ) a number 
of sequences, ( B ) a number of columns and ( C ) the average pairwise percent 
identity for each family. The points on the plots indicate the mean, and the 
vertical bars indicate the standard deviation. 
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Working Group ( 75 ) to formulate community-agreed val-
idation targets ( 76–78 ). 

A significant source of errors in the structural description
of RNA (and DNA) is the misconception about the geome-
try of the nucleic acid backbone. The structural complexity
of the backbone was understood early on ( 79 ), but the topic
attracted much less attention until the end of the 1990s.
At that time, large RNA ribozyme and ribosome struc-
tures started to emerge and it became possible to analyze
their structural variability based on experimental data. The
smallest unit that makes sense to categorize structurally is
a dinucleotide, which includes two riboses and captures the
complexity of the phosphodiester linkage C3’–O3’–P–O5’–
C5’. Howe v er, e v en this relati v ely small fragment has nine
torsional degrees of freedom. The first conformer defini-
tions of dinucleotide fragments were published at the begin-
ning of 2000, first for RNA ( 80–82 ), later for DNA ( 83 ) and
recently for both RNA and DNA as a structural alphabet
CANA built from dinucleotide conformational classes NtC
( 84 ). Perhaps the relati v e nov elty of the concept of confor-
mational classes and technical difficulties with their imple-
mentation into routine refinement and validation protocols
is the reason why the classes are not widely used. We see
this fact as one of the reasons why the quality of newly de-
termined structures does not improve. 

Sequences and sequence alignments 

The efficiency of 3D RNA structur e pr ediction is likely
to be improved using information from multiple sequence
alignments (MSA). MSA has already been incorporated
into se v eral e xpert-based modeling methods in the human
categories of RNA-Puzzles and CASP-RNA ( 24 ). Such a
strategy is also applied in AlphaFold and other recent pro-
tein prediction methods. In these methods, correlated mu-
tations are used to detect residues that are in close contact
in 3D space, despite the distance in sequence. This princi-
ple has been understood for a long time in RNA ( 63 ). Un-
fortuna tely, crea ting high-quality RNA alignments is diffi-
cult and often r equir es the manual work of an expert. This
difficulty has led to there being far fewer RNA vs. protein
alignments. 

To illustrate the difference in quantity, we can compare
two r esour ces, Pfam and Rfam. Pfam and Rfam ar e col-
lections of protein / RNA alignments and models annotate
them in genomes. Rfam is the oldest and largest source of
alignments for ncRNAs. Although ther e ar e other r esour ces
that collect similar data, for example, miRBase ( 85 ) or Mir-
GeneDB ( 86 ) for RNA, they are smaller and focus on one
particular type of molecule. Pfam was founded in 1997 ( 87 ),
while Rfam in 2003 ( 88 ). Each member of Rfam / Pfam is
made up of a curated seed alignment which is used to build
the model that allows finding more examples of the family
and produces what is known as a full alignment. The mod-
els in Pfam are based on hidden Markov models, while in
Rfam they are covariance models and also include a con-
sensus secondary structur e. Her e, we will discuss some of
the issues facing machine learning practitioners that want
to use RNA alignments by comparing these r esour ces. 

First, while Rfam is similar to Pfam in spirit and goals,
it contains far less data than Pfam. At the time of writing
this paper, the current version of Rfam, 14.9, contains 4108
alignments, while the current release of Pfam, 35.0, con-
tains 19 632. The difference in resource size is due to his-
torical bias towards RNA gene discovery, the difficulty in
identifying homology between related RNAs, and the dif-
ficulty in building new alignments for Rfam. Constructing
Rfam alignments r equir es using covariance models, which
ar e much mor e computationally e xpensi v e compared to the
hidden Markov models applied to build Pfam alignments. 

Second, RNA alignments are on average smaller than
protein alignments. This relationship relates to the number
of sequences, with seed alignments containing an average
of 5 sequences in Rfam versus 23 in Pfam (Figure 5 A), as
well as the number of columns, 95 columns in Rfam ver-
sus 163 in Pfam (Figure 5 B). There is also a significant dif-
ference in the degree of conservation, with the Rfam align-
ments 83% conserved versus 26% in Pfam (Figure 5 C). To-
gether, it means that ther e ar e few RNA alignments com-
pared to proteins, and the existing alignments are smaller
and lack variation. Ther efor e, it is likely that there is not
enough RNA data yet to effecti v ely train machine learning
methods. This is also supported by the fact that the cur-
rentl y best-performing RN A-dedicated methods in CASP
are not machine learning based. 

Third, Rfam alignments have several global biases that
mak e w orking with them difficult. One is that the most com-
mon alignments are for simple molecules. Taking into ac-
count the type of RNA, most alignments concern miRNA
precursors (35%) followed by snoRNA (19%) (Figure 6 ).
miRNA pr ecursors ar e simple molecules, essentially a he-
lix with a few small loops and mismatches; in proteins, this
is most similar to a single alpha helix. Such simple struc-
tures do not represent the complexity of RNA f olds; f or
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Figure 6. Counts of Rfam families, seed sequences, full sequences and structures for all Rfam families organized by Rfam RNA type. 
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xample, they do not contain any junctions, while –– as dis- 
ussed above –– the junction topology is essential to deter- 
ine the overall structure of more complex RNAs. 
Another global bias is observed in the number of seed or 

ull sequences, Rfam has the most data for bacterial small 
N A (sRN A) sequences. Howe v er, ther e ar e few structur es
f these molecules with < 50 in PDB at the time of writing. 
n terms of full alignments, tRNAs constitute the largest 
roup (45%), and rRNA subunits are the third largest, ac- 
ounting for another 8% (Figure 6 ). These families are the 
ost commonly solved structur es, r epr esenting 26% and 

1% of all known 3D structures of RNA, respecti v ely (Fig- 
re 6 ). Although a large collection of these sequences and 

tructures is valuable, we recommend caution. Creating ML 

odels that generalize to other structures is unlikely if 
heir training is based only on ribosomes. Se v eral predic- 
ion methods that train off currently existing datasets have 
ot yet produced high-quality models. 
In addition to the global bias in the RNA data, there are 

pecific issues with Rfam alignments that must be consid- 
red in machine learning. For example, not all non-Watson– 

rick base pairs are aligned in Rfam, and the aligned ones 
ave not been handled in a consistent manner. Moreover, 
fam consensus secondary structures can represent parts 
f the structure as unfolded. Howe v er, looking at the 3D 

tructure , when available , in that region often shows a clear 
econdary structur e. These r egions include places known to 

ave species-specific structure or their unstructured form 

esults from Rfam limitations. Rfam families are intended 

o cover a wide phylogenetic range. For example, the eu- 
aryotic large subunit ribosomal RN A famil y (RF02543) 
 epr esents all large rRNA subunits in all eukaryotes. 
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Howe v er, rRNA is well known to vary considerably within
the kingdom, or e v en within a species, with important func-
tional consequences ( 89 ). Since the 2D structures in Rfam
must r epr esent what is common to all members of the
family, they are often underfolded in many regions. This
should be dealt with when building a useful ML train-
ing set. Finally, pseudoknots –– a key factor in 3D RNA
structures –– have been shown to help organize the global
structur e, but ar e not consistently annotated in Rfam align-
ments. Unfortunately, current 2D and 3D prediction meth-
ods struggle to predict them. Rfam is working to anno-
tate more observed pseudoknots but many families lack
them. 

In summary, there are se v eral issues with the RNA align-
ment da taset tha t will pose problems for deep learning. The
data set is small compared to proteins, is highly biased in
se v eral ways, and the existing alignments have some short-
comings. While work is ongoing to fix all these issues, it
will be challenging to use these data to successfully predict
3D structures. One key issue will be creating a test / train
da taset tha t r epr esents the observ ed comple xity, while not
being overly biased. 

CONCLUSIONS 

Gi v en the history of protein fold prediction, can we an-
ticipate when the RNA realm will see similar results? Al-
phaFold’s success came 50 years after the first work on
computer-based protein structure prediction. This period
of time was necessary to accumulate a sufficient volume of
high-quality, reliable data on protein sequences and struc-
tures. At the same time, information and computer technol-
ogy were de v eloped, enab ling efficient applications of arti-
ficial intelligence models to solve problems that traditional
computational methods could not deal with. Artificial neu-
ral networks as an idea are already 80 years old ( 90 ), but
it was only in the second decade of the 21st century that
they came into widespread use. In 2012, the power of deep
learning was demonstrated ( 91 , 92 ). It has triggered a flood
of projects that have applied DL models to various areas
of life. Among other things, this wave has brought about
ne w predicti v e methods dedicated to molecular structures.
All of them are data-hungry; AlphaFold has been trained
on structures of more than 170,000 proteins combined with
very large sequence alignments. We expect to have similar
r equir ements to successfully use neural networks for RNA
3D structure prediction. 

A simple way to estimate when AlphaFold for RNA
will be created is to consider when the number of RNA
structures or sequence alignments are comparable to the
currently available protein data. As mentioned above Pfam
contains 19 632 protein sequence alignments. Historically,
the growth of Rfam has been linear due to the r equir ement
for manual work to build each alignment and we observe
that on average Rfam adds a pproximatel y 205 alignments
per year. Thus, we estimate Rfam will contain 19 000 align-
ments in a pproximatel y 70 years. This is undoubtedly a vast
overestimate as we expect the RNA 3D structure prediction
problem to be solved by then. One technique which may
help is automatic family building. While this is still unsolved
for RNA, there has been recent work on this issue which
may be promising ( 93 ). Automatically built families were
used in training AlphaFold and may prove useful for RNA
as well ( 34 ). 

We belie v e that ther e ar e se v eral viab le approaches to en-
able the prediction of the 3D RNA structure in the near fu-
ture. First, the RN A comm unity can improve knowledge of
RNA structur e through mor e data, second, we can di v ersify
the data used in prediction, and finally, we can improve the
machine learning methods used. 

W ha t da ta is missing that would improve predictions? We
do not seem to know enough about RNA motifs to predict
their global structures. We may provide an educated guess,
at least for the small structural motifs, of which the most im-
portant are base-pair topologies. Concerning the latter, it is
very likely that they exist in known structures of reasonably
high resolution and can provide reliable geometries. There
are also strong reasons to belie v e that the CANA alphabet
describes more than 90% of the existing dinucleotide con-
formers; only a few of them may be missing ( 84 ). In our
opinion, mor e r esear ch is needed on intramolecular inter-
actions other than base pairs, namely hydrogen bonding
bridges of the O2’ group to bases , ribose , phosphates and
interactions between phosphate oxygens (mostly charged)
and other RNA constituents. Benchmarking the quality of
3D structures, as well as streamlined and consistent prin-
ciples of their validation, is r equir ed to ensur e r eliability in
data repositories. 

Another approach is to improve the size and scope of
multiple sequence alignments of RNA. Alignments of four-
letter RNA sequences ar e mor e challenging than those of
20-letter protein sequences. Some classes of RNA, such as
ribosomes, have a large number of sequences and we know
how to align them. Howe v er, more well-aligned sequences
of underr epr esented RNA classes are needed. Perhaps the
Tree-of-Life projects ( 94 , 95 ) will provide a sufficiently large
number of sequences. Currentl y, RN A gene prediction is
inconsistent across known genomes, so we encourage the
community to annotate ncRNA genes in newly sequenced
genomes. Annotated ncRNAs from Tree of Life projects
can sho w lo w sequence di v ersity, and we recommend that
ncRNA gene annotation in metagenomes be used as a so-
lution. We note that AlphaFold r equir ed metagenomic se-
quences in order to reach its maximum performance, and we
suspect that RNA will show a similar trend. Solving these
challenges involves finding all the ncRNA genes and mak-
ing the data reusable. 

Consistentl y annotating RN A families across all
genomes will be useful and may increase the di v ersity
of RNA sequences availab le; howe v er, it seems that a
prediction method would benefit from a wider range of
RNA families. As discussed above, many Rfam families
are structurally similar. We belie v e that providing a more
di v erse training set would be useful. While Rfam is the
global repository of RNA families, not all known families
can be found ther e. Corr ecting this and working to create
new families that are different from existing ones should
be a focus of the RN A comm unity. Additionall y, creating
high-quality alignments remains a challenge ( 96 ). 

If the current amount and growth rate of currently avail-
able sequence and structure data are not sufficient, can they
be supplemented with other sources of data? We think so.
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n particular, RNA biochemistry has a rich history and 

as de v eloped many methods to ra pidl y probe 3D struc-
ures ( 97 , 98 ). A subset of these data, SHAPE probing, has
roven useful to classical prediction methods, and we expect 

t to be helpful to DL-based approaches. Although many 

abs probe the structure of RNA, these data are not readily 

vailab le to ML practitioners. Wor king as a community to 

tandardize, collect and distribute such data seems valuable 
or pr edictions. Additionally, ther e ar e other low r esolution 

ethods, such as SAXS and AFM, which may prove useful 
n modelling structures ( 97 ). 

Finall y, the ra pid and hard-to-predict development of 
L methods may potentially change our pessimistic pre- 

ictions about the ability to accurately predict 3D RNA 

tructures. De v elopment of methods that are less data hun- 
ry, e.g. transfer learning, may allow successful prediction 

ooner. We belie v e that RNA structure prediction is an ex- 
ellent test case for r esear chers inter ested in machine learn- 
ng in the face of limited data. At the moment, we do not be-
ie v e that reliab le 3D RNA prediction will be availab le in the
020s, but we challenge the community to prove us wrong. 
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