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Editorial on the Research Topic
Exploring and expanding the protein universe with non-canonical amino
acids

In just 30 years, genetic code engineering has allowed us to expand the repertoire of
amino acids in proteins from nature’s 20 canonical amino acids to more than 250 non-
canonical amino acids (ncAAs), including non-α-amino acids (Fricke et al., 2023), and the
trend is increasing. It is now possible to incorporate many types of amino acid substrates
(natural and unnatural, long/heavy/bulky, aliphatic, aromatic, halogenated, etc.) into
recombinant proteins. Such a field development, especially genetic code expansion
(GCE) by orthogonal pairs and expanded genetic alphabet, is unprecedented in natural
sciences. Applications of ncAAs are diverse, ranging from biochemical studies of protein-
activity relationships with atomic precision to the generation of protein-based polymers with
novel functions and ultimately novel life forms. Despite the advantages of ncAAs, the
understanding, manipulation, and design of protein structure, dynamics, and function still
largely rely on canonical amino acids. Our long-term mission is to transform GCE into a
routine toolbox for many laboratories and industries.

The present Research Topic “Exploring and Expanding the Protein Universe with Non-
canonical Amino Acids” aims to provide the reader with the fundamentals of GCE along with
the latest advances. The Research Topic contains 1 review and 8 original research articles,
with contributions from both experts and newcomers in the field.

An excellent starting point for anyone interested in genetic code engineering is the
review paper by Kimoto and Hirao,who discuss both natural base pairs (NBP) and unnatural
base pairs (UBP) from the perspective of codon-anticodon interactions. The NBP system
includes stop codon suppression (SCS), four-base codon-anticodon interactions, and sense
codon reprogramming (SCR). SCS, and in particular, in-frame amber (UAG) codon
suppression, is by far the most popular implementation of GCE. In fact, only one
original research paper ventures to do SCR, the work by Tittle et al. The authors of this
study conclude that in the absence of queuosine nucleoside found in the anticodons of some
E. coli tRNAs, reassignment of sense codons is slightly enhanced.
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Although our Research Topic is dominated by intact cells as
platforms for the incorporation of ncAA, cell-free translation
systems (CFTS) are also presented. CFTS are particularly useful
for expressing so-called “difficult” proteins such as toxins and
membrane proteins that would otherwise threaten cell viability.
Moreover, the current practice involves encoding the components in
plasmids, which may not always be stable. Schloβhauer et al.
developed two orthogonal eukaryotic CFTS derived from the
Chinese Hamster Ovary (CHO) cell line. The first system is
based on transient transfection and expression of aminoacyl-
tRNA synthetases (aaRS) prior to cell disruption for extract
preparation. The second system is based on stable transfected
cells containing aaRS expression cassettes at a defined locus
created by the CRISPR/cas9 genomic editing system.

The majority of studies using GCE methods focus on single-
point mutations. From a technical perspective, the difficulty of
incorporating a particular ncAA at multiple sites is a direct
consequence of the relatively low efficiency of most aaRS
variants, although the chemical instability of some ncAAs may
also play a role. Gueta et al. reported a set of powerful aaRS for
the incorporation of 15 different aromatic ncAAs at up to 10 residue
positions in the elastin-like polypeptide (ELP), an intrinsically
disordered protein. Koch et al. chose a different approach to
increase the yield of genetically encoded protein nitration. They
prevented the reduction of nitro groups by engineering an E. coli
strain with reduced nitroreductase activity. The result is an ELP
variant carrying up to 60 copies of a nitrobenzyl-containing ncAA,
which is the largest number of ncAAs ever introduced in a single
polypeptide.

An even greater challenge is the incorporation of two ormore distinct
ncAAs, partially due to the lack ofmutually orthogonal aaRS/tRNApairs,
quintuply orthogonal being the current frontier (Beattie et al., 2023). The
two most common aaRS employed in GCE campaigns are the tyrosyl-
tRNA synthetase from Methanocaldococcus jannaschii (MjTyrRS) and
the pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcinae. Other
PylRS from Methanomethylophilus alvus and, more recently, from
Methanococcoides burtonii (Koch et al., 2023) are also rapidly gaining
momentum. Fisher et al. evolved an optimized MaPylRS variant
(MaPylRSopt) by phage-assisted non-continuous evolution.
MaPylRSopt is hyperactive, specifically recognizes Nε-substituted
lysines and certain phenylalanine derivatives, but not para-substituted
ones, and is orthogonal to MjTyrRS, making it an excellent tool for the
single and dual incorporation of diverse ncAAs. Another method
established by Morosky et al. allows the incorporation of
selenocysteine (the 21st proteinogenic amino acid) and Nε-acetyl-
lysine (a common post-translational modification) at UGA and UAG
codons, respectively. As a result, acetylated selenoproteins can be
produced in E. coli by dual SCS.

Sometimes, a protein of interest cannot be readily produced in a
given host. This is the case with the selenoprotein thioredoxin reductase
(trxR1) in mammalian cells. To circumvent this problem, Wright et al.
fused a cell-penetrating peptide tag derived from the trans-activator of
transcription (TAT) protein of human immunodeficiency virus.
Purified TAT-trxR1, recombinantly expressed in E. coli by GCE, is
efficiently uptaken by human cells, providing a new platform to study
such a protein in situ.

Finally, another application of ncAAs is in the area of
photocontrol to switch/turn protein activity ON and OFF. Pham

et al. report the use of a photocaged tyrosine (NBY) to control the
binding affinity between two medically relevant proteins,
interleukin-24 (a cytokine) and its receptor IL-20R2, by UV light.
Cell signaling through the JAK/STAT phosphorylation cascade can,
thus, be regulated as needed.

It has been almost three decades since the field of genetic code
engineering emerged in the 1990s, and during this time, we have
witnessed not only significant advancements in methodology but also
the emergence of intriguing concepts. For instance, Szostak and his
colleagues proposed that approximately 70% of codons could be
reassigned (Herman et al., 2007). Similarly, Söll and his research
team estimated that it might be possible to encode the genetic
makeup of an organism using only 30 to 40 sense codons
(Krishnakumar et al., 2013), leaving over 20 sense codons available
for reassignment with ncAAs (Mukai et al., 2015). Against this
background, we are pleased that the articles in our Research Topic
contribute by presenting various aspects of reprogramming the genetic
code, from basic principles to practical examples. These efforts are
aimed at fostering further advancements in this technology. For
instance, merging orthogonal translation with synthetic metabolism
(Völler and Budisa, 2017) would reduce the need for external
supplementation of ncAAs (or nucleobases).

Undoubtedly, the unexplored potential of ncAAs will attract
researchers from diverse disciplines, including AI, material science,
biophysics, biomedicine, and evolutionary biology, among others, to
engage in this captivating field. Thanks to these collaborative
endeavors, the boundaries of the protein universe and life itself
will be pushed, explored, and expanded.
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